A novel graph structure for salient object detection based on divergence background and compact foreground

نویسندگان

  • Chenxing Xia
  • Hanling Zhang
  • Keqin Li
چکیده

In this paper, we propose an efficient and discriminative model for salient object detection. Our method is carried out in a stepwise mechanism based on both divergence background and compact foreground cues. In order to effectively enhance the distinction between nodes along object boundaries and the similarity among object regions, a graph is constructed by introducing the concept of virtual node. To remove incorrect outputs, a scheme for selecting background seeds and a method for generating compactness foreground regions are introduced, respectively. Different from prior methods, we calculate the saliency value of each node based on the relationship between the corresponding node and the virtual node. In order to achieve significant performance improvement consistently, we propose an Extended Manifold Ranking (EMR) algorithm, which subtly combines suppressed/active nodes and mid-level information. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-art saliency detection methods in terms of different evaluation metrics on several benchmark datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Saliency Detection via Fusing Foreground and Background Priors

Automatic Salient object detection has received tremendous attention from research community and has been an increasingly important tool in many computer vision tasks. This paper proposes a novel bottom-up salient object detection framework which considers both foreground and background cues. First, A series of background and foreground seeds are extracted from an image reliably, and then used ...

متن کامل

Salient Object Detection via Objectness Proposals

Salient object detection has gradually become a popular topic in robotics and computer vision research. This paper presents a real-time system that detects salient object by integrating objectness, foreground and compactness measures. Our algorithm consists of four basic steps. First, our method generates the objectness map via object proposals. Based on the objectness map, we estimate the back...

متن کامل

Statistical Background Modeling Based on Velocity and Orientation of Moving Objects

Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...

متن کامل

Salient Object Detection via Augmented Hypotheses

In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objec...

متن کامل

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.11266  شماره 

صفحات  -

تاریخ انتشار 2017